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Abstract 
System identification problem for linear and non-linear systems utilizes a large set of 

algorithms for estimating a vector of model parameters, relying on measurements and system 
dynamics. In particular one can use a family of Kalman filter adaptive algorithms. In situation 
when system of interest is ill-conditioned it is proper to use regularized modification of 
Kalman filter. In comparison to standard algorithm, properly tuned RKF is significantly more 
stable to ill-conditioned problems, which frequently arise in the field of system identification 
due to limited observability or controllability of systems of interest.  

This paper shows an approach for preliminary tuning and analyzing regularized Kalman 
filter algorithm (RKF) for parameter identification of a vector meter unit using visualization 
of its crucial values on a computer model. Visual based approach to RKF tuning on a 
computer model allows for simple and intuitive way to find suboptimal regularization 
strength and set it at initialization stage avoiding the necessity to include computationally 
expensive methods of real-time tuning in algorithm loop. It is shown that regularization 
strength value, found using this approach, yielded a better estimation accuracy not only in 
comparison with standard Kalman filter but in comparison with other possible regularization 
strength values as well.  

Keywords: regularized Kalman filter, ill-conditioned problem, Tikhonov regularization, 
system dynamics visualization. 

 

1. Introduction 
Kalman filter algorithm was introduced by Rudolf Kalman in 1960 and this original 

implementation is still widely used in many areas of engineering and automatic system 
design. It is a discrete linear adaptive filter, that utilizes bayesian estimation of state vector of 
the dynamic linear system. If noise present in measurements is unbiased Gaussian, it’s 
estimated vector is also unbiased and has minimal variance [1]. 

Kalman filter allows to take into account stochastic parameters of measurement noise, 
system’s intrinsic dynamics, reaction to control signal and to minimize estimation bias and 
variance. Original Kalman filter algorithm does not require to tune any parameters except 
initial mean and variance of state vector and covariance matrices for measurement and state 
noise. However with the broadening range of applications many modifications of KF were 
introduced, including regularized Kalman filter variant [2, 3, 4], which purpose is to 
overcome effects of ill-conditioned measurements. Difficulties with ill-conditioned 
measurements frequently arise in system parameters identification area and lead to biased 
estimations and filter instability. The source of ill-conditioning may be bad observation 
matrix and limited or bad choice of controlling input signals while taking measurements. 

Paper [2] substantiates mathematical concept of regularized Kalman filter and introduces 
its implementation with real-time regularization parameter tuning. This allows to accurately 
and dynamically adapt algorithm to incoming measurements and changes in stochastic state 
matrices, however for some application this may prove to be computationally expensive. In 
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such cases it is more suitable to choose suboptimal constant value for regularization 
parameter. It can be done preliminary by visualization and analyzing algorithm performance 
on computer model. This paper introduces new visual based approach to such tuning for 
problem of parameter identification of abstract 3 component vector meter unit, which takes 
known positions in 3D-space and measures reference vector value in form of 3 vector 
components and it’s norm. 

Computer model and algorithms were implemented in Matlab. All visualization made 
with matplotlib package for Python. 

2. Regularized Kalman filter 
Standard discrete Kalman filter estimates a state vector of linear dynamic system 

𝑥𝑘+1 = Ф𝑘+1,𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑧𝑘+1 = 𝐻𝑘+1𝑥𝑘+1 + 𝑉𝑘+1
 (1) 

Here for each timestep k 𝑥𝑘+1 is system state vector; 𝑤𝑘 is unbiased Gaussian noise with 
covariance matrix  𝑄 ; 𝑧𝑘+1 - measurement vector; 𝑉𝑘+1 - unbiased Gaussian measurement 
noise with covariance matrix 𝑅 ; Ф𝑘+1,𝑘 state innovation matrix from k to k+1 step; 𝐻𝑘+1  is 

observation matrix, 𝑢𝑘+1  is controlling signal vector and 𝐵𝑘 its transformation matrix. 
However for model parameter identification problem this system can be simplified. 

Parameters of vector meter unit are components of 𝑥𝑘+1 and assumed to be constant w.r.t 
time, thus Ф𝑘+1,𝑘 = 𝐼  and 𝑤𝑘 = 0. Observation matrix 𝐻𝑘+1 defined by rotation control 
program and known at each step k. Controlling signal does not affect vector of parameter, 
thus 𝑢𝑘+1 = 0. 

Kalman filter approximates probability distribution of 𝑥𝑘+1  by calculating its conditional 
mean value 𝑥𝑘+1|𝑘+1 and conditional covariance matrix 𝑃𝑘+1|𝑘+1  given sequence of 

measurements 𝑧1, 𝑧2, . . . 𝑧𝑘+1  obtained through k+1 steps. To do this algorithm carries out 
following calculations on each step: 

1. Estimates a priori mean 𝑥𝑘+1|𝑘 and covariance 𝑃𝑘+1|𝑘 state given measurements from 

previous steps 
𝑥𝑘+1|𝑘 = Ф𝑘+1,𝑘 ⋅ 𝑥𝑘|𝑘

𝑃𝑘+1|𝑘 = Ф𝑘,𝑘+1𝑃𝑘|𝑘Ф𝑘,𝑘+1
𝑇 + 𝑄

 (2) 

This step is omitted in particular problem, shown in this paper, since Ф𝑘+1,𝑘 = 𝐼 and 𝑤𝑘 =
0. 

2. Calculates measurement residuals on current step given newly obtained measurements 
𝑧𝑘+1: 

𝑑𝑧𝑘+1 = 𝑧𝑘+1 −𝐻𝑘+1𝑥𝑘+1|𝑘. (3) 

3. Calculates Kalman gain matrix 𝐾𝑘+1: 
𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻𝑘+1

𝑇 𝑆−1

𝑆𝑘 = [𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 + 𝑅 ]

 (4) 

4. Updates posterior mean 𝑥𝑘+1|𝑘+1 and covariance 𝑃𝑘+1|𝑘+1 with measurement residuals 

and Kalman gain on step k+1: 
𝑥𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1𝑑𝑧𝑘+1
𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1|𝑘

 (5) 

Algorithm starts with initial estimated mean 𝑥0, covariance 𝑃0  of state vector and 
measurement noise covariance 𝑅 . Kalman filter gradually transforms posterior state 
covariance matrix 𝑃𝑘+1|𝑘+1 to diagonal form and minimizes its trace [3]. 

 



 

 
Figure 1. Condition number for matrix 𝑆𝑘. 

 

Figure 1 shows, that despite condition number of 𝑆𝑘 = [𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 + 𝑅 ] quickly 

stabilizes, it is still too large for 𝑆𝑘 to be considered good-conditioned. 

Ill-conditioning affects stability of term [𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 + 𝑅 ]

−1
  in (4) which leads to 

divergent estimates when measurement noise conditions deviate from unbiased Gaussian. 
This issue is addressed in [2] by showing that Kalman gain can be as well calculated 

through inverting normal matrix [2, 5]  

𝑁𝑘 = Ф𝑘,𝑘+1
𝑇 𝑅−1Ф𝑘,𝑘+1 + 𝑃𝑘|𝑘+1

−1

𝐾𝑘+1
𝑅 = [Ф𝑘,𝑘+1

𝑇 𝑅−1Ф𝑘,𝑘+1 + 𝑃𝑘|𝑘+1
−1 ]

−1
Ф𝑘,𝑘+1
𝑇 𝑅−1

 (6) 

which in its turn may be regularized via Tikhonov regularization to improve normal 
matrix conditioning. Tikhonov regularization of normal matrix is done by adding new term 
𝛼𝑅𝐴𝑘 into part, that is inverted in (6): 

𝐾𝑘+1
𝑅 = [Ф𝑘,𝑘+1

𝑇 𝑅−1Ф𝑘,𝑘+1 + 𝑃𝑘|𝑘+1
−1 + 𝛼𝑅𝐴𝑘]

−1
Ф𝑘,𝑘+1
𝑇 𝑅−1 (7) 

Here 𝛼𝑅 is a scalar value known as regularization parameter and 𝐴𝑅   is regularization 

matrix which should include priory filter information. For this reason 𝑃𝑘+1|𝑘
−1   can be used as 

computationally cheap way to dynamically set 𝐴𝑅   along all algorithm steps [2]. In order to 
keep computational complexity low regularization parameter 𝛼𝑅  can be set on initialization 
stage and remain constant throughout all steps. 

3. Choosing regularization parameter by performance 
visualization 

In this work calibration parameter 𝛼𝑅  is chosen with computer modeled visualization of 
Kalman filter performance. Parameter vector (state vector) 𝑥  has 9 components and at each 
step 4 measurements are obtained, thus 𝑑𝑖𝑚(𝑧𝑘) = 4 × 1. Estimation sequence has 6150 steps 
with every 𝐻𝑘 , 𝑘 = 1. . .6150  defined by control vectors for measuring unit. 



 

Regularization parameter value is expected to vary in wide range for different 
implementation of (1) and sequences of 𝐻𝑘. It is proper to first visualize RKF performance for 
set of multiple 𝛼𝑅, increasing exponentially in power of 10 starting with 100. 

 

 
Figure 2. Change of conditioning for exponential set of 𝛼𝑅 along all steps. 

 
Figure 2 shows, that regularization starts to take effect only with 𝛼𝑅 ≈ 104. In overall, 

conditioning monotonously depends on 𝛼𝑅  and at values of regularization parameter around 
107 it reaches values lesser that 100 by the end of the sequence.  

However low condition number does not inherently mean better parameter estimation in 
terms of lesser error norm ‖𝑥𝑒𝑛𝑑 − 𝑥‖ and this is shown further. 

 

 
Figure 3. Change of estimation error norm for exponential set of 𝛼𝑅 along all steps. 

 
Figure 3 shows that despite best conditioning was archived with largest parameter 𝛼𝑅  in 

set, the best estimation w.r.t norm ‖𝑥𝑒𝑛𝑑 − 𝑥‖  is actually obtained with much lesser 𝛼𝑅 ≈ 105. 
The reason for this is that regularization term 𝛼𝑅𝐴𝑘  grows too large and effectively 
overpowers any other terms in 𝑁𝑘 to the point when actual filter information form matrices 
𝐻𝑘  and 𝑅 is not recoverable. Thus, the largest values of 𝛼𝑅correspond to biggest errors in 
actual estimation. 

With optimal 𝛼𝑅  localized in range (104; 106) it is possible to increase precision in 
determining proper 𝛼𝑅. This time we use set of 𝛼𝑅 with linear growth from 104 to 106. 

 



 

 
Figure 4. Change of conditioning for linear second set of 𝛼𝑅 along all steps. 

 

 
Figure 5. Change of estimation error norm for linear second set of 𝛼𝑅 along all steps. 

 
Figures 4 and 5 show that for 𝛼𝑅 in range (104; 106) condition number and estimation 

error norm have exponential dependence of 𝛼𝑅  but behave in opposite to each other, which 
demonstrates an effect of excessively large regularization term. Best estimation in this set is 
archived with 𝛼𝑅 = 109000 which is still close to the result, obtained earlier with exponential 
set of regularization parameters. 

 



 

 
Figure 6. Change of estimation error norm for cases without regularization (𝛼𝑅 = 0)  

and with regularization (𝛼𝑅 = 109 ⋅ 103) along all steps. 
 

Table 1. Vectors of estimated parameters after full sequence. With and without regularization. 

𝛼𝑅 Relative error of estimation after full sequence, % ‖𝑥𝑒𝑛𝑑 − 𝑥‖ 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 

0 19.4154 39.5286 0.1814  17.7025 14.2140 0.3282 14.7019 39.9001 0.2408 36.0771·10-7 

109
⋅ 103 

15.2200 8.1408 0.1669 13.5619 6.1334 0.3179 5.6683 8.5110 0.2261 5.2848·10-7 

 
Figure 6 and table 1 demonstrate effect of applying regularization to Kalman filter 

estimation problem. Although vector estimation made without regularization has faster 
convergence, ill-conditioning eventually makes estimation diverge. Vector estimation done 
with applied regularization term (𝛼𝑅 = 109 ⋅ 103), determined through visual analysis has 
slower but stable convergence. This yields to a smaller relative estimation error, overall norm 
of estimation error is almost 7 times less for vector estimated with RKF. Plot shows that by 
the end of sequence, estimation vector has not stopped converging. Longer measurement 
sequence might result in even smaller estimation error. 

4. Conclusion 
Kalman filter modifications may be used in conditions where application of original 

version of algorithm is not possible or too inefficient. Regularized modification of Kalman 
filter is purposed to avoid difficulties that arise with ill-conditioned problems. However it 
requires tuning in order to be effective. 

Paper introduces a new approach for tuning regularized modification of linear discrete 
Kalman filter adaptive algorithm for system identification problem on a computer model via 
visualization of its performance and visual analysis of results This approach allowed to 
determine suboptimal constant regularization parameter and improve estimation precision 
not only in comparison with standard version of filter but also with other values of 
regularization parameter in range (1; 109), since excessively large values render algorithm 
completely incoherent with a system, which parameters are identified. Suboptimal tuning 
yielded in smaller relative errors for components of estimated vector separately and in almost 
7 times lower overall estimation error norm in comparison with standard filter version. 



 

References 
1. Kalman R. E. A New Approach to Linear Filtering and Prediction Problems, 

Transaction of the ASME-Journal of Basic Engineering, Vol.82, No.1, 1960, pp. 35-45. 
2. Li Y., Gui Q., Han S., Gu Y.W. Tikhonov Regularized Kalman Filter and its 

Applications in Autonomous Orbit Determination of BDS. WSEAS Transactions on 
Mathematics, Vol. 16, 2017, pp. 187-196. 

3. Milde T., Leistritz L., Astolfi L., Miltner W. H.R., Weiss T., Babiloni F., Witte H. A new 
Kalman filter approach for the estimation of high-dimensional time-variant multivariate AR 
models and its application in analysis of laser-evoked brain potentials, NeuroImage, Volume 
50, Issue 3, 2010, pp. 960-969 

4. Golub G. H., Von Matt U. Tikhonov regularization for large scale problems. – Scientific 
Computing and Computational Mathematics Program, Computer Science Department, 
Stanford University, 1997, pp. 3-26.  

5. Masnadi-Shirazi H., Masnadi-Shirazi A., Dastgheib M. A., A Step by Step 
Mathematical Derivation and Tutorial on Kalman Filters. arXiv e-prints, 2019, arXiv: 
1910.03558. 

6. J. Kaipio and E. Somersalo, Nonstationary Inverse Problems and State Estimation, 
Journal of Inverse and Ill-posed Problems, Vol7, No.3, 1999, pp. 273-282. 

7. T. Lalith Kumar, K. Soundararajan. Perfomance comparison of adaptive filters with 
Kalman filter for speech enhancement, Bookman International Journal of Electrical & 
Electronics Engineering, №01, 2012, pp. 5-10. 

8. Jigan V.I. Mnogoobrazie algoritmov adaptivnoy filtracii po kriteriyu naimenchikh 
kvadratov, Sovremennaya elektronika, №03, 2008, pp. 32-39. 

 
 


	1. Introduction
	2. Regularized Kalman filter
	3. Choosing regularization parameter by performance visualization
	4. Conclusion
	References

